General Method for the Synthesis of 2'-Azido-2', $\mathbf{3}^{\prime}$-dideoxynucleosides by the Use of [1,2]-Hydride Shift and $\boldsymbol{\beta}$-Elimination Reactions ${ }^{1}$

Masajiro Kawana* and Hiroyoshi Kuzuhara
RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, 351-01 Japan

Abstract

The title nucleosides (16U, C, G and H) were synthesized from pyrimidine and purine ribonucleosides in about 30% overall yield in 6 steps via key intermediates, protected 3'-deoxy-'arabino'nucleosides, which were obtained by deoxygenative [1,2]-hydride shift and β-elimination reactions of sulfonylated ribo-counterparts. Xanthine analogues (9 X and 16X) were prepared from the corresponding guanine nucleosides. The unprotected 3^{\prime}-deoxy-'arabino'-nucleosides ($\mathbf{9 U}, \mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{H}, \mathbf{X}$) and their azido nucleosides 16 did not show any significant activity against either HIV in vitro or P388 leukaemia in mice.

Deoxygenative [1,2]-hydride shift ${ }^{2}$ and β-elimination ${ }^{3}$ reactions of vicinal cis-diol sulfonates have been in numerous instances found to be powerful methods ${ }^{4-10}$ for the synthesis of deoxygenated nucleosides from the corresponding ribonucleosides involving a $2^{\prime}, 3^{\prime}$-diol system. The discovery ${ }^{11}$ that $2^{\prime}, 3^{\prime}-$ dideox ynucleosides and their 3^{\prime}-azido derivatives possess significant anti-HIV (human immunodeficiency virus) activity has generated considerable interest in the chemistry and biochemistry of deoxygenated nucleosides. ${ }^{12}$ In going programmes to develop potential antiviral and/or antitumour agents, we succeeded in the general synthesis of biologically interesting 2^{\prime} -azido- $2^{\prime}, 3^{\prime}$-dideoxy pyrimidine and purine nucleosides ($16 \mathrm{U}, \mathrm{C}$, $\mathbf{A}, \mathbf{G}, \mathbf{H}, \mathbf{X}$) by the application of $[1,2]$-hydride shift and β elimination reactions ${ }^{6.7}$ at the key steps (Scheme 1). Our method involves two synthetic approaches to common intermediates for the synthesis of the desired azido nucleosides starting from readily available ribonucleosides, uridine, cytidine, adenosine, guanosine, and inosine ($\mathbf{1 U}, \mathbf{C}, \mathbf{A}, \mathbf{G}$, and \mathbf{H}). Route A is for both pyrimidine and purine nucleosides and route B for the latter.

Results and Discussion

In the first route, the simultaneous protection of both 5^{\prime} hydroxy and amino functions in substrates 1C, A, and \mathbf{G} was carried out by the use of chlorobis(4-methoxyphenyl)phenylmethane ($4,4^{\prime}$-dimethoxytrityl chloride, DMTrCl), ${ }^{13}$ while substrates $1 \mathbf{U}$ and \mathbf{H} were protected at their 5^{\prime}-hydroxy groups. However, since 5^{\prime}-DMTr-protected inosine was found to be rather unstable under conditions used for the work-up procedures in further reactions, we utilized a 4-methoxytrityl (MMTr) group ${ }^{14}$ for the protection of compound $\mathbf{1 H}$. The MMTr protecting group was also effective for the protection of the other nucleosides (data not shown).
For route A, the DMTr- or MMTr-protected pyrimidine and purine nucleosides $\mathbf{2 U},{ }^{15} \mathbf{2 C}, 2 \mathrm{~A},{ }^{\mathbf{6 b}} \mathbf{2 G}$ and $\mathbf{2 H}{ }^{16}$ were regioselectively pivaloylated ${ }^{17}$ at their 2^{\prime}-hydroxy groups with trimethylacetyl chloride (pivaloyl chloride, PivCl) followed by methanesulfonylation with methanesulfonyl chloride $(\mathbf{M s C l})$ in a one-pot reaction ${ }^{7}$ to furnish $3^{\prime}-\mathrm{O}$-methylsulfonyl-2' -O pivaloyl nucleosides ($\mathbf{3 U}, \mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{H}$) as the main products. In this step compound 2A gave an inseparable mixture (86:14, determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, Table 3) of compound 3A and its 2^{\prime}-methylsulfonyl-3'-pivaloyl isomer. Furthermore, the N^{1} - or O^{6}-position of compounds 2 G and $\mathbf{2 H}$ were also methanesulfonylated (or pivaloylated) to some extent. ${ }^{18}$ However, the main products ($\mathbf{3 A}, \mathbf{G}$, and \mathbf{H}) contaminated with these by-products could be used for the next reaction without puri-
fication, because under the alkaline conditions employed for the next hydride-shift rearrangement the N^{1} - and O^{6}-substituted groups in acylated substrate $\mathbf{3 G}$ or $\mathbf{3 H}$ were found to be easily cleaved to reproduce the parent compound ($\mathbf{3 G}$ or $\mathbf{3 H}$), judging from TLC analyses; in the case of compound 3A, products derived from the 2^{\prime}-methylsulfonyl- 3^{\prime}-pivaloyl isomer could be removed by chromatography.

The methanesulfonates, $\mathbf{3 U}, \mathbf{C}, \mathbf{A}, \mathbf{G}$, and \mathbf{H}, were then individually subjected to the deoxygenative [1,2]-hydride-shift rearrangement with combined reagents, potassium hydroxidesodium borohydride ${ }^{6.7}$ in methanolic solution, where the following three-step reaction proceeded very nicely in one pot. First, the 2^{\prime}-pivaloyl group in substrates 3 was cleaved to form an intermediate (5) under the alkaline conditions. Secondly, the hydride shift and the removal of the 3^{\prime}-methylsulfonyloxy group occurred in a concerted manner to afford a 3^{\prime}-deoxy- 2^{\prime}-keto nucleoside (6). Finally, ketonucleosides 6 was reduced with the hydride to provide a 3^{\prime}-deoxy-'arabino'-nucleoside derivative (8U, $,^{19} \mathbf{8 C},{ }^{7 a} 8 \mathrm{~A},{ }^{6 \mathrm{~b}} \mathbf{8 G}$, or 8H) in good yield (Table 1). The reduction of substrates 6 proceeded with high stereoselectivity ($>95 \%$, judging from TLC analyses) except for compound $6 \mathbf{G}$. In this case, 2^{\prime} '‘down'-hydroxy anomers of compound $\mathbf{8 G}$ were formed in $\sim 20 \%$ combined yield, but these have not yet been fully characterized.

The spectral data of compounds $8 \mathrm{U},{ }^{19} \mathbf{8 C},{ }^{7 a} 8 \mathrm{~A},{ }^{6 b} 8 \mathrm{G}$, and $\mathbf{8 H}$ were compatible with their assigned structures (Tables 2 and 3). Furthermore, deprotection of these nucleosides with an acid gave the corresponding free 3^{\prime}-deoxy-'arabino'-nucleosides (9U, $\mathbf{C}, \mathbf{A}, \mathbf{G}$, and \mathbf{H}) in high yields. The ${ }^{1} \mathrm{H}$ NMR spectra of the products 9U, 9C, 9A, and 9G were identical with those of the respective authentic samples. ${ }^{7 b .20}$ The structure of the new compound $\mathbf{8 H}$ was determined on the basis of its elemental analysis and spectral data (UV and ${ }^{1} \mathrm{H}$ NMR). In addition, the structure of the sugar moiety of compound $\mathbf{9 H}$ was also confirmed by its methanolysis: the obtained mixture of methyl glycosides was identical with those prepared from the known compound $9 \mathrm{~A} .{ }^{6 b .7 b}$ Recently the synthetic utilities of modified nucleosides related to $\mathbf{8 U}{ }^{8}$ and $\mathbf{8 A} \mathrm{A}^{9.21}$ have been reported.

An alternative method (route B) for the synthesis of the intermediates 8 was performed by the application of our reaction ${ }^{6}$ of N^{6}, O^{5}-bis(dimethoxytrityl)- $2^{\prime}, 3^{\prime}$-bis- O-(methylsulfonyl)adenosine 4 A with $\mathrm{KOH}-\mathrm{NaBH}_{4}$, giving compound $\mathbf{8 A}$ in 96% yield. The method was more practical than that via route A, although its application was limited to nucleosides such as 1 G and 1 H , the base moiety of which had no group participating with the $\mathrm{C}-2^{\prime}$ bearing the methanesulfonyloxy group. We have demonstrated earlier that a $3^{\prime}-O$-methylsul-fonyl- $2^{\prime}-O$-(tolylsulfonyl)adenosine derivative was susceptible

1

5^{\prime}
4

3

7

10

11

$-v$

14
 $9 x \quad 9 G, x \quad 9$

(C)

(A)

1

(H)

$\mathrm{B}=\mathrm{R}=\mathrm{H}, \mathrm{B}^{\mathrm{R}}=\mathrm{DMTr}\left(4,4^{\prime}\right.$-dimethoxytrityl) or MMTr [(4-methoxytrityl), (H) series], and Ms = MeSO $\mathbf{2}^{-}$
Scheme 1 Reagents and conditions: i, $\mathrm{DMTrCl}\left(\mathrm{MMTrCl}\right.$ for $\mathbf{1 H}$), pyridine-DMSO; ii, $\mathrm{Bu}^{t} \mathrm{COCl}$, pyridine then $\mathrm{MeSO}_{2} \mathrm{Cl}$; $\mathrm{iii}, \mathrm{NaBH}_{4}, \mathrm{KOH}$, $\mathrm{MeOH}-\left(\mathrm{PhH}\right.$); iv, $\mathrm{MeSO}_{2} \mathrm{Cl}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{3} \mathrm{~N}$ (for 2G), pyridine (for $\mathbf{2 H}$); $\mathbf{v}, 80 \% \mathrm{AcOH}$; vi, $\mathrm{Mel}-\mathrm{DBU}$, DMF or $\mathrm{MeSO}_{3} \mathrm{Me}-\mathrm{KOH}, \mathrm{MeOH}-\mathrm{PhH}$; vii, $\mathrm{MeSO}_{2} \mathrm{Cl}$, pyridine (for $8 \mathrm{U}, \mathrm{C}$); viii, $\mathrm{MeSO}_{2} \mathrm{Cl}$ then KOH (for $\mathbf{8 G}, \mathrm{H}$); ix, $\mathrm{NaN} \mathrm{N}_{3}, \mathrm{DMF}$; $\mathrm{x}, \mathrm{NaNO}_{2}, \mathrm{HCO}_{2} \mathrm{H}$, water.
to selective methanolysis at the 2^{\prime}-position under alkaline conditions, producing a 2^{\prime}-hydroxy-free compound (5^{\prime}). ${ }^{6}$ Therefore we propose that, in a similar way, the conversion of a protected $2^{\prime}, 3^{\prime}$-bismethanesulfonate (4 G or 4 H) into the corresponding 3^{\prime}-deoxy- 2^{\prime}-hydroxy compound 8 would take place via a 2^{\prime}-hydroxy-free nucleoside (5^{\prime}) as well as an enol methanesulfonate (7) formed by the β-elimination ${ }^{10}$ of the $2^{\prime}, 3^{\prime}-$ bis(methanesulfonate).

Direct methanesulfonylation of compounds 2G and 2 H with $\mathbf{M s C l}$ produced disulfonates 4 G and $\mathbf{4 H}$, respectively, in good yield along with $O^{6.2^{2} \cdot 3^{\circ}}$ - and $N^{1}, O^{2^{\prime} \cdot 3^{\circ}}$-trismethanesulfonylated guanosine and inosine derivatives [10 (22%) and 11 (11%), respectively]. These trismethanesulfonates were isolated and fully characterized by means of spectroscopy as well as elemental analysis. Here again, the reaction of compounds 10 and 11 with methanolic KOH provided the parent $2^{\prime}, 3^{\prime}-$ bismethanesulfonates, 4 G and $\mathbf{4 H}$, respectively, so that the crude products 4 G and $\mathbf{4 H}$, contaminated by the trisulfonate
were used for the next deoxygenation without purification Upon treatment of compound 4G under conditions similar to those for the deoxygenative [1,2]-hydride shift, compound 8G was obtained in 75% yield together with its isomer (19%), results analogous to those in route A. In contrast to this, the yield (78%) of compound $\mathbf{8 H}$ produced from disulfonate $\mathbf{4 H}$ (route B) was 10% lower than that through route A. We found that the reaction of disulfonate $\mathbf{4 H}$ with $\mathrm{KOH}-\mathrm{NaBH}_{4}$ gave an unexpected N^{1}-methylated derivative (12) as a by-product in 9% isolated yield. This side reaction caused a decrease in the yield of compound $\mathbf{8 H}$ via route B. No formation of compound 12 from $\mathbf{3 H}$ was detectable.

The structure of compound 12 and of its deprotected nucleoside 13 were determined on the basis of their elemental analyses as well as physical properties, in which the IR spectra of both compounds showed strong absorption at 1660-1680 cm^{-1} characteristic of the carbonyl group in the hypoxanthine base moiety, ${ }^{16.22}$ thus indicating the presence of N^{1} - rather

Table 1 The nucleoside derivatives 2-16 prepared

Compound	Reaction time (h) ${ }^{\text {a }}$ [temp. $\left({ }^{\circ} \mathrm{C}\right)$]	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	Column chromatography		$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C}\right)^{d} \\ & \text { (Recryst. solvent) } \end{aligned}$
			Adsorbent ${ }^{\text {b }}$ (g)	Eluent ${ }^{\text {c (ratio) }}$	
2U	22 (rt)	73	A (140)	a (95:5)	117 (sintered),
					120-124 (from
					$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$)
2 C	18 (rt)	70	A (90)	d (7:3:0 $\longrightarrow 9: 1: 0.1)$	amorph.
2A	20 (rt)	89	A (70)	c (7:3)	amorph.
2G	3.5 (rt)	88	B (120)	b (99:1:1 $\longrightarrow 9: 1: 0.1)$	amorph.
2H	19	98			197-199 (from EtOH)
3U	P: 1 (0-5)	73	A (40)	a (95.5:0.5 $\longrightarrow 99: 1)$	amorph.
	M: $1(0-5) \longrightarrow 2(\mathrm{rt})$				
3C	$\begin{aligned} & \text { P: } 0.8(0-5) \\ & \text { M: } 0.5(0-5) \longrightarrow 1.7(\mathrm{rt}) \end{aligned}$	93	A (100)	a (99:1)	amorph.
3A	$\begin{aligned} & \text { P: } 0.8(0-5) \\ & \mathrm{M}: 0.5(0-5) \longrightarrow 4(\mathrm{rt}) \end{aligned}$	95°	A (130)	a (99:1)	amorph.
3G	P: 0.25 (0-5)	not isolated			
	M: 0.17 (0-5)				
3H	P: 1.17 (rt)	not isolated			
	M: 4 (rt)				
4A ${ }^{\text {f }}$	[2.5 (0-5 $\longrightarrow \mathrm{rt}$)	94	B	e (99.5:0.5 $\longrightarrow 95: 5)]^{\delta}$	
4G	0.3 (0-5)	77	A (44)	a (99.5:0.5 \rightarrow 95:5)	amorph.
4H	0.17 (0-5) $\longrightarrow 3.5$ (rt)	70	B (400)	a (97:3 $\longrightarrow 95: 5)$	amorph.
8 U	23 (rt)	84	A (20)	a (99:1 $\longrightarrow 97: 3$)	amorph.
8 C	25 (rt)	86	A (40)	a (99:1)	amorph.
8A	(from 3A) 22 (rt)	74	A (50)	a (99.5 : 0.5)	amorph.
	(from 4A) [24 (rt)	96	B	f (9:1:0.1:0 $\longrightarrow 9: 1: 0.1: 0.1)]^{f}$	
8G	(from 3G) 28 (rt)	72^{g}	A (25)	a (98:2)	amorph.
	(from 4G) 24 (rt)	75^{8}	A (20)	a (99:1 $\longrightarrow 98: 2 \longrightarrow 97: 3)$	amorph.
8H	(from 3H) 27.5 (rt)	89	A (35)	a (99.5:0.5 $\longrightarrow 98: 2)$	amorph.
	(from 4H) 20 (rt)	78	A (40)	$\mathbf{a}(97: 3 \longrightarrow 95: 5 \longrightarrow 9: 1)$	amorph.
9 U	$5 \mathrm{~min}(65)$	91			144-145 (from PriOH)
9 C	35 min (65)	100			amorph.
9 A	$15 \mathrm{~min}(65)$	98			193-194 (from MeOH)
9G	30 min (65)	83			>240 (decomp.) (from EtOH-water, 6:1)
9H	$15 \mathrm{~min}(65)$	100			$\begin{aligned} & 193.5-194.5 \text { (sintered), }>250 \text { (decomp.) } \\ & \text { (from EtOH-water, 20:3) } \end{aligned}$
9X	1.5 (rt)	56	C (120 cm ${ }^{3}$)	h	>240 (decomp.) (from EtOH-water, 3:1)
10	0.3 (0-5)	22	A (44)	a (99.5:0.5 $\longrightarrow 95: 5$)	amorph.
11	0.17 (0-5) $\longrightarrow 3.5$ (rt)	11	B (400)	a (97:3 $\longrightarrow 95: 5)$	amorph.
12	(From $\mathbf{8 H}$ with MeI) $10 \min (\mathrm{rt})$	75	B (50)	a (98:2)	amorph.
13	0.5 (65)	75	B (150)	$\mathbf{a}(95: 5 \longrightarrow 9: 1 \longrightarrow 7.3)$	185-186 (decomp.) ${ }^{\text {h }}$
14U	2.75 (rt)	92	A (15)	$\mathbf{a}(99: 1 \longrightarrow 97: 3)$	amorph.
14C	4.5 (rt)	79	B (22)	f (50:50:1:2)	amorph.
$14 A^{f}$	[5 (rt)	93	B	b (99:1:1)] ${ }^{\text {f }}$	
14G	0.25 (rt) ${ }^{i}$	89	A (44)	a (9:1)	amorph.
14H	$5 \mathrm{~min}(0-5) \longrightarrow 2.7(\mathrm{rt})^{j}$	73	B (15)	a (95:5)	amorph.
15U	3 (110-115)	89	A (15)	a (99.5:0.5)	amorph.
15C	4 (110-115)	93	B (48)	f (50:50:1:0.2)	amorph.
$15 A^{f}$	[5 (105-110)	78	B	$\mathrm{g}(97: 3: 1)]^{5}$	
15G	7 (110-115)	71	A (50)	a (99:1)	amorph.
15H	6.3 (110-115)	80	A (20)	a (99: $1 \longrightarrow \mathbf{9 6 : 4)}$	amorph.
16U	3 (rt)	80			167-168 (decomp.) (from $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$)
16C	1.25 (50-55)	84			171-172 (decomp.) (from $\mathrm{Pr}^{\mathrm{i} O H}$)
$16 A^{f}$	[4 (rt)	75	B	a (19:1)] ${ }^{\text {f }}$	
16G	0.25 (rt) $\longrightarrow 0.5(65)$	90			217-218 (sintered), >219 (decomp.) (EtOH-water, 1:1)
16H	0.5 (65)	90			193.5.5-194.5 (melted, then solidified), >250 (decomp.) (from EtOH-water, 87:13)
16X	$1(\mathrm{rt})$	65	$\begin{aligned} & C \quad\left(50 \mathrm{~cm}^{3}\right) \\ & \text { then } B(25) \end{aligned}$	$\begin{aligned} & \text { i }(9: 1 \longrightarrow 1: 1) \\ & \text { j }(75: 20: 5) \end{aligned}$	amorph.

${ }^{a}$ rt: room temperature; P: PivCl; M: MsCl. ${ }^{\text {b }}$ A: neutral silica gel (SilicAR 100-200 mesh, Mallinckrodt); B: Silica gel 60 ($70-230$ mesh, Merck); C:
 e: $\mathrm{PhH}-\mathrm{AcOEt}-E t_{3} \mathrm{~N}$; f: $\mathrm{PhH}-\mathrm{AcOEt}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeOH} ; \mathbf{g}: \mathrm{CHCl}_{3}-\mathrm{AcOEt}^{\mathrm{EEt}} \mathbf{3}_{3} \mathrm{~N}$; h: water; i: water-MeOH; j: AcOEt-water-PriOH. ${ }^{\text {d }}$ Uncorrected; measured on a Yamato micro melting-point apparatus. ${ }^{e} \mathrm{~A}$ combined yield of a mixture (86:14) of 3A and its isomer. ${ }^{\boldsymbol{f}}$ Ref. 6b. ${ }^{9}$ In addition, $9-(3-$ deoxy- x - and - β-D-erythro-pentofuranosyl)guanines were formed in $\sim 20 \%$ yield. ${ }^{h}$ Crystallized by trituration with EtOH. ${ }^{i}$ Followed by treatment with KOH at r.t. for 5 min . ${ }^{\mathrm{j}}$ Followed by treatment with KOH at $0-5{ }^{\circ} \mathrm{C}$ for 8 min .
than O^{6}-methylation. The following chemical conversion also supported the assigned structures. The reaction of compound $\mathbf{8 H}$ with methyl iodide in the presence of 1,8 -diazabicyclo-
[5.4.0]undec-7-ene (DBU) provided a sole product (75% yield) that was identical with compound 12 obtained from $\mathbf{4 H}$. We considered that N^{1}-methylation of the hypoxanthine moiety

Table 2 Analytical and spectral data of the nucleosides 2-16

Compound	Formula (FW) [or Lit. m.p. $\left({ }^{\circ} \mathrm{C}\right)$]	$\begin{aligned} & \hline \text { Found }^{a . b}(\%) \\ & \text { (Required) } \text { [Calc.] } \end{aligned}$				$[\alpha]_{\mathrm{D}} /{ }^{\circ}$		$\begin{aligned} & \mathrm{UV}^{d} \lambda_{\text {mear }}^{\text {Mour }} / \mathrm{nm} \\ & \left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right. \\ & \left.\mathrm{cm}^{-1}\right) \end{aligned}$	
		C	H	N	S	(c, $\left.\mathrm{CHCl}_{3}\right)^{\text {c }}$			
2 U	$\left[111-112\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]^{s}$	65.1	5.6	5.0		+7.2(0.91)	25	235 (23 600)	
		[65.3	5.7	$5.0]^{9}$				265 (11900)	
2 C	$\underset{(853.4)}{\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{9} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}}$	$\begin{aligned} & 71.8 \\ & (71.8) \end{aligned}$	$\begin{gathered} 5.9 \\ (5.9) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.9) \end{gathered}$		+ 17.9 (1.11)	22	$\begin{aligned} & 231(45000) \\ & 281(19400) \end{aligned}$	
2A	[amorph.] ${ }^{\text {h }}$					[-4.5 (0.75)	24	$\begin{aligned} & 274(31000) \\ & \text { 232sh }^{h} \end{aligned}$	
2G	$\underset{(897.0)}{\mathrm{C}_{\mathrm{S}_{2} \mathrm{H}_{44}} \mathrm{~N}_{5} \mathrm{O}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 69.3 \\ (69.6) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.6) \end{gathered}$	$\begin{gathered} 7.7 \\ (7.8) \end{gathered}$		+29.0 (0.78)	20	$\begin{aligned} & 234(43600) \\ & 275(19800) \end{aligned}$	
2H	[175-176 (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$) $]^{i}$	66.4	5.2	10.2 $10.4]^{\text {j }}$		- 14.8 (1.06, DMF)	25	235 (21 400)	
3U	$\underset{(824.2)}{\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S} \cdot 1.6 \mathrm{C}_{5} \mathrm{H}_{12}}$	$\begin{gathered} {[66.7} \\ 64.2 \end{gathered}$ (64.1)	$\begin{gathered} 3.2 \\ 7.5 \\ (7.2) \end{gathered}$	$\begin{gathered} 3.2 \\ (3.0) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.9) \end{gathered}$	+ 19.4 (1.47)	22	$\begin{aligned} & {[235(21400)]^{\prime}} \\ & 235(23000) \\ & \text { 262sh } \end{aligned}$	
3 C	$\begin{gathered} \mathrm{C}_{57} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S} \\ (1010) \end{gathered}$	$\begin{aligned} & 67.5 \\ & (67.8) \end{aligned}$	$\begin{gathered} 5.9 \\ (5.9) \end{gathered}$	$\begin{array}{r} 4.25 \\ (4.2) \end{array}$	$\begin{gathered} 3.0 \\ (3.2) \end{gathered}$	+34.9 (1.29)	22	$\begin{aligned} & 232(44400) \\ & 276(19700) \end{aligned}$	
3A	$\underset{(1071)}{\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{~S} \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}{ }^{\mathrm{k}}}$	$\begin{gathered} 67.8 \\ (67.8) \end{gathered}$	$\begin{gathered} 6.1 \\ (6.2) \end{gathered}$	$\begin{gathered} 6.6 \\ (6.5) \end{gathered}$	$\begin{gathered} 2.9 \\ (3.0) \end{gathered}$				
3G	(not isolated)								
3H	(not isolated)								
4G	$\begin{aligned} & \mathrm{C}_{54} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{~S}_{2} \end{aligned}$	$\begin{gathered} 62.3 \\ (62.1) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.1) \end{gathered}$	$\begin{array}{r} 6.55 \\ (6.7) \end{array}$	(6.1)	- 50.4 (0.87)	20	$\begin{aligned} & 234(45000) \\ & 263(22000), \end{aligned}$	$\begin{aligned} & 1700(\mathrm{C}=\mathrm{O}) \\ & 5(21900) \end{aligned}$
4H	$\mathrm{C}_{32} \mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2} \cdot 0.3 \mathrm{C}_{5} \mathrm{H}_{12}$	$\begin{gathered} 55.9 \\ (56.0) \end{gathered}$	$\begin{gathered} 5.1 .1 \\ (5.0) \end{gathered}$	$\begin{gathered} 7.5 \\ (7.8) \end{gathered}$	$\begin{gathered} 8.7 \\ (8.9) \end{gathered}$	-19.3 (0.79)	20	235 (22 100)	1690 (C=O)
8 U	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot 1.0 \mathrm{C}_{5} \mathrm{H}_{12} \end{aligned}$	$\begin{aligned} & 69.7 \\ & (69.8) \end{aligned}$	$\begin{gathered} 7.3 \\ (7.0) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.65) \end{gathered}$		+ 12.9 (1.47)	22	$\begin{aligned} & 234(24200) \\ & 265(12900) \end{aligned}$	
8C	$\mathrm{C}_{\mathrm{C}_{1} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}}^{(834.0)}$	$\begin{gathered} 73.2 \\ (73.45) \end{gathered}$	$\begin{gathered} 6.5 \\ (6.2) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.0) \end{gathered}$		+17.1 (1.1)	25	281 (17400)	
8A	[amorph.] ${ }^{\boldsymbol{1}}$					$[+9.2$ (0.9)	22	274 (30000) ${ }^{\text {n }}$	
8G	$\begin{aligned} & \mathrm{C}_{52} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{8}-0.5 \mathrm{H}_{2} \mathrm{O} \\ & (881.0) \end{aligned}$	$\begin{gathered} 70.9 \\ (70.9) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.7) \end{gathered}$	$\begin{aligned} & 7.9 \\ & (7.95) \end{aligned}$		+ 30.4 (0.89)	20	$\begin{aligned} & 234(45000) \\ & 275(19400) \end{aligned}$	
8H	$\underset{(533.6)}{\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 67.5 \\ (67.5) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.5) \end{gathered}$	$\begin{gathered} 10.5 \\ (10.5) \end{gathered}$		-66.0 (0.95)	20	235 (21 600)	
9 U	[146-147 (from PriOH)] ${ }^{1}$	$\frac{144-}{145}$	$\begin{aligned} & \text { (from } \\ & \mathrm{EtOH} \end{aligned}$			[+ 146 (0.8 , water)	27	263 (10 300)] ${ }^{\text {d }}$	
9 C	[hygroscopic amorph.] ${ }^{\text {d }}$								
9 A	$[195-196(\mathrm{MeOH})]^{\prime}$					[-24.3 (1.1, DMF)	20	259 (14 200)] ${ }^{\text {l }}$	
9G	[>235 (from EtOH)]'	$\begin{array}{r} 43.8 \\ {[43.8} \end{array}$	$\begin{aligned} & 4.8 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.5]^{n} \end{aligned}$		[+8.7 (1.1, DMF)	20	$\begin{aligned} & 253(14800) \\ & 271 \mathrm{sh}]]^{\prime} \end{aligned}$	
9H	$\underset{(252.2)}{\mathrm{C}_{10} \mathrm{H}_{12} \mathbf{N}_{4} \mathrm{O}_{4}}$	$\begin{gathered} 47.4 \\ (47.6) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	$\begin{gathered} 21.9 \\ (22.2) \end{gathered}$		$\begin{aligned} & -18.7 \text { (0.83, DMSO) } \\ & +28.3(0.57) \end{aligned}$	21 21	249 (11 800)	1710 (C=O)
9X	$\underset{(268.2)}{\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}}$	$\begin{aligned} & 44.5 \\ & (44.8) \end{aligned}$	$\begin{gathered} 4.5 \\ (4.5) \end{gathered}$	$\begin{array}{r} 20.9 \\ (20.9) \end{array}$		$\begin{aligned} & -8.3 \text { (} 0.90 \text {, water, } \\ & \text { DMF) } \end{aligned}$	25	$\begin{aligned} & 235(10000) \\ & 261(10200) \end{aligned}$	
10	$\mathrm{C}_{(1230)} \mathrm{C}_{55} \mathrm{~N}_{5} \mathrm{O}_{15} \mathrm{~S}_{3} \cdot 1.5 \mathrm{C}_{5} \mathrm{H}_{12}$	$\begin{gathered} 61.0 \\ (61.0) \end{gathered}$	$\stackrel{6.2}{(6.0)}$	$\begin{gathered} 5.5 \\ (5.7) \end{gathered}$	$\begin{gathered} 7.6 \\ (7.8) \end{gathered}$	-28.8 (1.65)	20	$\begin{aligned} & 283(10400) \\ & 307(10400) \end{aligned}$	1620 (C=N, C=C)
11	$\underset{\substack{839.8)}}{\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{3} \cdot 0.9 \mathrm{C}_{5} \mathrm{H}_{12}}$	$\begin{gathered} 53.6 \\ (53.6) \end{gathered}$	$\begin{array}{r} 5.45 \\ (5.4) \end{array}$	$\begin{gathered} 6.6 \\ (6.7) \end{gathered}$	$\begin{aligned} & 11.4 \\ & (11.45) \end{aligned}$	-14.7(0.96)	21	234 (18900)	1720 (C=O)
12	$\underset{(560.2)}{\mathrm{C}_{31} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.3 \mathrm{C}_{5} \mathrm{H}_{12}}$	$\begin{aligned} & 69.4 \\ & (69.7) \end{aligned}$	$\begin{gathered} 6.0 \\ (6.1) \end{gathered}$	$\begin{gathered} 9.8 \\ (10.0) \end{gathered}$		-3.9 (0.77)	21	$234(20700)$	1680 (C=O)
13	$\underset{(268.1)}{\mathrm{C}_{1} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 49.4 \\ (49.3) \end{gathered}$	$\begin{gathered} 5.3 .3 \\ (5.3) \end{gathered}$	$\begin{gathered} 20.7 \\ (20.9) \end{gathered}$		-12.2 (1.36, DMF)	20	250 (9800)	1660 (C=O)
14U	$\begin{aligned} & \mathrm{C}_{\mathrm{C}_{1} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}-0.9 \mathrm{C}_{5} \mathrm{H}_{12}{ }^{\circ}}^{(673.6)} . \end{aligned}$	$\begin{aligned} & 63.1 \\ & (63.3) \end{aligned}$	$\begin{array}{r} 6.65 \\ (6.4) \end{array}$	$\begin{gathered} 3.9 \\ (4.2) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	+41.7(1.59)	20	$\begin{aligned} & 235(34200) \\ & \text { 262sh } \end{aligned}$	
14C	$\underset{(984.2)}{\mathrm{C}_{52} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S} \cdot 1.0 \mathrm{C}_{5} \mathrm{H}_{12}}$	$\begin{gathered} 69.4 \\ (69.6) \end{gathered}$	$\begin{gathered} 6.7 \\ (6.7) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.3) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.3) \end{gathered}$	+27.6 (1.0)	25	276 (20900)	
14G	$\underset{(938.1)}{\mathrm{C}_{52} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}}$	$\begin{gathered} 66.7 \\ (66.6) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.5) \end{gathered}$	$\begin{array}{r} 7.25 \\ (7.5) \end{array}$	$\begin{gathered} 3.4 \\ (3.4) \end{gathered}$	+ 11.1 (0.8)	20	$\begin{aligned} & 234(45800) \\ & 260(21300), 2 \end{aligned}$	$\begin{array}{r} (19800) \\ 5(20300) \end{array}$
14H	$\begin{gathered} \mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S} \cdot 1.4 \mathrm{C}_{5} \mathrm{H}_{12} \\ (703.7) \end{gathered}$	$\begin{gathered} 64.6 \\ (64.9) \end{gathered}$	$\begin{gathered} 6.7 \\ (6.7) \end{gathered}$	$\begin{gathered} 7.7 \\ (8.0) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.6) \end{gathered}$	$\begin{aligned} & +11.2(0.9) \\ & -4.6(1.43, \mathrm{DMF}) \end{aligned}$	21 21 20	$\begin{aligned} & 235(22700) \\ & 235(22400) \end{aligned}$	
15U	$\underset{(607.9)}{\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{6} \cdot 0.6 \mathrm{C}_{5} \mathrm{H}_{12} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}}$	$\begin{aligned} & 65.5 \\ & (65.2) \end{aligned}$	$\begin{gathered} 5.9 \\ (6.2) \end{gathered}$	$\begin{array}{r} 11.3 \\ (11.5) \end{array}$		-42.2 (0.8)	22	264 (11 100)	$2120\left(\mathrm{~N}_{3}\right)$
15C	$\mathrm{C}_{\mathrm{C}_{1}} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{7}$	$\begin{gathered} 71.1 \\ (71.3) \end{gathered}$	$\begin{gathered} 5.9 .9 \\ (5.9) \end{gathered}$	$\begin{gathered} 9.5 \\ (9.8) \end{gathered}$		- 31.0 (0.9)	25	281 (19900)	$2110\left(\mathrm{~N}_{3}\right)$
15G	$\underset{(906.0)}{\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{7}-0.5 \mathrm{H}_{2} \mathrm{O}}$	$\begin{array}{r} 68.95 \\ (68.9) \end{array}$	$\begin{gathered} 5.4 \\ (5.45) \end{gathered}$	$\begin{array}{r} 12.3 \\ (12.4) \end{array}$		-5.6 (1.04)	22	$\begin{aligned} & 234(43600) \\ & 263(20000), 2 \end{aligned}$	$\begin{gathered} 2110\left(\mathrm{~N}_{3}\right) \\ 6(19800) \end{gathered}$
15H	$\underset{(614.5)}{\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 0^{0} 9 \mathrm{C}_{5} \mathrm{H}_{12}}$	$\begin{gathered} 67.3 \\ (67.4) \end{gathered}$	$\begin{gathered} 6.2 \\ (6.2) \end{gathered}$	$\begin{gathered} 16.0 \\ (16.0) \end{gathered}$		-49.7 (0.77)	20	235 (21 700)	$2100\left(\mathrm{~N}_{3}\right)$
16U	[167-169 (from EtOH)] ${ }^{\text {p }}$	$\begin{array}{r} 42.7 \\ {[42.4} \end{array}$	4.4	$\begin{aligned} & 27.3 \\ & 27.5]^{q} \end{aligned}$		-17.5 (0.87, DMF)	20	$\begin{array}{r} 262(10300) \\ {[263(\mathrm{EtOH})} \end{array}$	$\begin{gathered} 2110\left(\mathrm{~N}_{3}\right) \\ (10000) 21^{p} \end{gathered}$
16C	$\underset{(254.0)}{\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}}$	$\begin{aligned} & 42.4 \\ & (42.55) \end{aligned}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	$\begin{aligned} & 33.1 \\ & (33.1) \end{aligned}$		-42.6 (0.3, DMF)	25	271 (9000)	$2130\left(\mathrm{~N}_{3}\right)$

Table 2 (continued)

Compound	Formula (FW) [or Lit. m.p. $\left({ }^{\circ} \mathrm{C}\right)$]	$\begin{aligned} & \text { Found }^{a . b}(\%) \\ & \text { (Required) }[\text { Calc. }] \end{aligned}$				$[\alpha]_{\mathrm{D}} /{ }^{\circ}$		UV ${ }^{d} \lambda_{\max }^{\mathrm{MeOH}} / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathbf{c m}^{-1}$)	$\begin{aligned} & \mathrm{IR}^{e} \boldsymbol{v}_{\boldsymbol{v}_{\mathrm{KBr}}^{\mathrm{Kmax}}} \\ & \mathrm{~cm}^{-1} \end{aligned}$
		C	H	N	S	$\left(c, \mathrm{CHCl}_{3}\right)^{\text {c }}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$		
16G	$\underset{(301.3)}{\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 39.8 \\ (39.9) \end{gathered}$	$\begin{aligned} & 4.3 \\ & (4.35) \end{aligned}$	$\begin{aligned} & 36.9 \\ & (37.2) \end{aligned}$		- 13.0 (1.02, DMF)	22	255 (15 200)	$2110\left(\mathrm{~N}_{3}\right)$
16H	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{O}_{3} \\ (277.2) \end{gathered}$	$\begin{gathered} 43.2 \\ (43.3) \end{gathered}$	$\begin{aligned} & 4.0 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 35.15 \\ & (35.4) \end{aligned}$		-60.6 (0.78, DMF)	20	$\begin{aligned} & 245(11600) \\ & 249(11700) \end{aligned}$	$2140\left(\mathrm{~N}_{3}\right)$
16X	$\underset{(307.7)}{\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 39.2 \\ (39.0) \end{gathered}$	$\begin{aligned} & 3.8 \\ & (4.1) \end{aligned}$	$\begin{aligned} & 31.6 \\ & (31.9) \end{aligned}$		- 57.4 (0.13, DMF)	25	$\begin{aligned} & 241(9400) \\ & 258(10200) \end{aligned}$	$2100\left(\mathrm{~N}_{3}\right)$

${ }^{a}$ Performed by the Microanalytical Laboratory of this Institute. ${ }^{b}$ Amorphous analytical samples were obtained by precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ pentane; all samples were dried at $60^{\circ} \mathrm{C}$ for 4 h in vacuo over phosphorus pentaoxide. ${ }^{\text {c }}$ Measured with a Perkin-Elmer Model 241MC polarimeter. ${ }^{d}$ Recorded using a Varian Cary 2200 instrument. ${ }^{e}$ Obtained on a Shimadzu IR-27 spectrophotometer. ${ }^{f}$ Ref. ${ }^{15}{ }^{9}{ }^{9}$ Calc. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 0.1 \mathrm{Et}_{2} \mathrm{O}-0.3 \mathrm{H}_{2} \mathrm{O}(559.4)$. ${ }^{h}$ Ref. $6 b^{i}{ }^{i}$ Ref. 16. ${ }^{j} \mathrm{Calc}$. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$ (540.6). ${ }^{k}$ A mixture (86:14) of 3A and its isomer. ${ }^{i}$ Ref. $7 b$. ${ }^{m}$ Ref. 20. ${ }^{n}$ Calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}(274.4) .{ }^{\circ}$ Dried at rt for 4 h over phosphorus pentaoxide. ${ }^{p}$ Ref. $25 .{ }^{9} \mathrm{Calc}$. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}(255.0)$.
would take place by the attack of an anion on the N^{1}-position of species 4-8 to the methyl carbon of methyl methanesulfonate ${ }^{23}$ that was generated in situ by the methanolysis of disulfonates 4 to sulfonates 5^{\prime} as well as enol sulfonates 7 to ketones 6 . We found that when compound $\mathbf{8 H}$ was treated with 1 mol equiv. of methyl methanesulfonate under conditions similar to those for the deoxygenation $(\mathbf{4 H} \longrightarrow \mathbf{8 H})$, we could isolate compound 12 in 15% yield with a 51% recovery of the starting material. On the other hand, the N^{1} - or O^{6}-methylated derivative of compound 8 G was not isolated in route B or in the reaction of this compound with methyl methanesulfonate, presumably because of electronic and/or steric reasons attributable to the N^{2}-protected guanine moiety of substrate 8 G .

The final azido nucleosides ($16 \mathrm{U}, \mathrm{C}, \mathrm{G}$, and H) were synthesized from substrates 8 through a conventional 3-step sequence, according to the method reported for compound $16 \mathrm{~A} .{ }^{6 b}$ A preliminary report on the synthesis of azide 16 C from 8 C has been published. ${ }^{7 a}$ Treatment of substrates $8(\mathrm{U}, \mathrm{C}, \mathrm{G}$ or H) with MsCl , followed by $\mathrm{S}_{\mathrm{N}}{ }^{2}$ substitution of the resulting methanesulfonate (14) by an azido anion, afforded the corresponding protected 2^{\prime}-'down'-azido- $2^{\prime}, 3^{\prime}$-dideoxy nucleoside (15) in good overall yield. The ${ }^{1} \mathrm{H}$ NMR spectra of these azido derivatives showed small values $(0-2.2 \mathrm{~Hz})^{24}$ of the coupling constants between $1^{\prime}-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$, thus assigning the R configuration of the azido group at $\mathrm{C}-2^{\prime}$. Lastly, deprotection of azides $15(\mathbf{U}, \mathbf{C}, \mathbf{G}$ and $\mathbf{H})$ was effected with 80% acetic acid to give the corresponding 5^{\prime}-hydroxy azides 16 in $80-90 \%$ yields. The physical properties of compound $16 \mathrm{U}^{\mathbf{2 5}}$ were identical with those reported earlier. The structures of azides $16 \mathrm{C}, 16 \mathrm{G}$ and $\mathbf{1 6 H}$ were also confirmed on the basis of their elemental analyses and spectral data (IR, UV, and ${ }^{1} \mathrm{H}$ NMR).

For the purposes of biological testing, the preparation of xanthine congeners of species 9 and 16 was carried out according to the method reported in the literature. ${ }^{26}$ Individual treatment of compounds 9 G and 16 G with sodium nitrite in acidic media provided 3^{\prime}-deoxy-'arabino'- and 2^{\prime}-azido- $2^{\prime}, 3^{\prime}$ -dideoxy-xanthosines (9X and 16X) in 56 and 65% yield, respectively.

The nucleosides $9(\mathbf{U}, \mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{H}$ and \mathbf{X}) and the corresponding 2^{\prime}-azido congeners $\mathbf{1 6}(\mathbf{U}-X)$ were tested against both HIV-1 in vitro and P388 leukaemia in mice (for 16X, in vitro), but no significant activity was detected. ${ }^{27.28}$

In summary, we have developed a general method for the deoxygenation of the 3^{\prime}-hydroxy group with the configurational inversion of the 2^{\prime}-hydroxy function in the pyrimidine and purine ribonucleosides. The resulting 3'-deoxy-'arabino'-nucleosides were converted into the corresponding 2^{\prime}-azido- $2^{\prime}, 3^{\prime}$ dideoxynucleosides. From the biological evaluation of the prepared nucleosides, it was concluded that the 2^{\prime}-'down' azido groups of the $2^{\prime}, 3^{\prime}$-dideoxynucleosides played no essential role in anti-HIV activity, and that the lack of 3^{\prime} '‘down' hydroxy groups
in 1- β-D-arabinofuranosylcytosine $(\operatorname{ara}-\mathrm{C})^{29}$ and its adenine analogue (ara-A) ${ }^{30}$ caused their lack of anti-tumour activity.

Experimental

All ribonucleosides, DMTrCl , and MMTrCl were purchased from Dojin Chemical Co. (Japan), and used without purification. Reagent-quality solvents were dried over molecular sieves $4 \AA$ and used without further purification. Analytical HPTLC plates (Silica Gel 60, F_{254}) were purchased from Merck. Detection of spots on TLC was done by UV (254 nm) or by spraying the plates with a solution of MeOH -sulphuric acid-p-anisaldehyde ($85: 15: 5, \mathrm{v} / \mathrm{v} / \mathrm{v}$), followed by heating them on an electric plate. Reaction times and temperatures, yields, and the conditions for column chromatography are summarized in Table 1, unless otherwise specified. The physical and spectral data of the prepared nucleosides are listed in Tables 1-3.

5'-O-(4,4'-Dimethoxytrityl)uridine 2U, ${ }^{15}$ 4-N,5'-O-Bis(4,4'dimethoxytrityl)cytidine 2C, $6-\mathrm{N}^{5}-\mathrm{O}-\mathrm{Bis}\left(4,4^{\prime}\right.$-dimethoxytrityl)adenosine 2A, ${ }^{6 b} \quad 2-\mathrm{N}, 5^{\prime}-\mathrm{O}-$ Bis (4,4'-dimethoxytrityl)guanosine 2G, and 5'-O-(4-Methoxytrityl)inosine 2H.-Substrate 1C, 1A, $\mathbf{1 G}$ or $\mathbf{1 H}(10 \mathrm{mmol})$ was dissolved in dry dimethyl sulfoxide (DMSO) ($30-50 \mathrm{~cm}^{3}$) at room temperature (r.t.), after which dry pyridine $\left(20 \mathrm{~cm}^{3}\right)$ was added, while compound 1 U (10 mmol) was dissolved in dry pyridine $\left(40 \mathrm{~cm}^{3}\right)$. To this solution was added DMTrCl (for $\mathbf{1 U}, 10.5 \mathrm{mmol} ; \mathbf{1 C}, \mathbf{1 A}, 21 \mathrm{mmol} ; \mathbf{1 G}$, 30 mmol) or MMTrCl (for $\mathbf{1 H}, 11 \mathrm{mmol}$) at r.t. and the mixture was stirred at this temperature for $3.5-22 \mathrm{~h}$. After the mixture had cooled, it was quenched with 50% aq. pyridine $\left(2 \mathrm{~cm}^{3}\right)$, and the mixture was extracted with $\mathrm{CHCl}_{3}\left(250 \mathrm{~cm}^{3}\right)$. The extract was washed successively with water $\left(80 \mathrm{~cm}^{3}\right)$, aq. $\mathrm{NaHCO}_{3}(50$ cm^{3}), and water ($2 \times 80 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The pyridine was removed by co-evaporation with toluene. In the case of $\mathbf{1 U}, I G$ or $\mathbf{1 H}$, the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ ($100 \mathrm{~cm}^{3}$), and the undissolved material was collected by filtration. The amorphous crude product ($2 \mathrm{U}, \mathbf{C}, \mathbf{A}, \mathbf{G}$ or \mathbf{H}), was dried at $60^{\circ} \mathrm{C}$ in vacuo for 4 h , and was used for the next reaction. An analytically pure sample was obtained by column chromatography or recrystallization under conditions given in Table 1.

DMTr- or MMTr-Protected 3'-O-Methylsulfonyl-2'-Opivaloyl Nucleosides 3U, C, A and H.-The protected nucleoside ($2 \mathrm{U}, \mathrm{C}, \mathbf{A}$ or \mathbf{H}) (5 mmol), which had been dried by co-evaporation with benzene or dry pyridine, was dissolved in dry pyridine ($30-40 \mathrm{~cm}^{3}$). To this solution cooled to $0-5^{\circ} \mathrm{C}$ was added PivCl (for $\mathbf{2 U}, 7 \mathrm{mmol}$; for $\mathbf{2 C}, \mathbf{A}$ and $\mathbf{H}, 10 \mathrm{mmol}$), after which the mixture was stirred at this temperature (for $2 \mathrm{U}, \mathrm{C}$ and A) for $0.8-1 \mathrm{~h}$ or at r.t. (for $\mathbf{2 H}$) for $70 \mathrm{~min} . \mathrm{MsCl}(20 \mathrm{mmol})$ was

Table $3{ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a.b }}$ spectral data $\left(\delta_{\mathrm{H}}\right)$ for the nucleosides 2-16 prepared

Table 3 (continued)

${ }^{a}$ Obtained with a JEOL JNM-GX 500 spectrometer. ${ }^{b}$ Determined in $\mathrm{CDCl}_{3}(\mathrm{~A}),\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\mathrm{B})$, or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(\mathrm{C})$ with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard; coupling constants in Hz . ${ }^{c}$ The sugar protons were assigned by spin-spin decoupling experiments.
added to the mixture cooled to $0-5^{\circ} \mathrm{C}$ and the mixture was then stirred at this temperature for $0.5-1 \mathrm{~h}$ and then at r.t. for $1.7-4 \mathrm{~h}$. After the mixture had cooled, 50% aq. pyridine ($2 \mathrm{~cm}^{3}$) was added to quench the reaction, and the mixture was extracted with $\mathrm{CHCl}_{3}\left(250 \mathrm{~cm}^{3}\right)$. The extract was washed successively with water $\left(80 \mathrm{~cm}^{3}\right)$, aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$, and water $\left(80 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The resulting crude product, 3 , was used for further reactions without purification. An analytically pure sample was obtained by chromatography.

2-N,5'-O-Bis(4-4'-dimethoxytrityl)-3'-O-methylsulfonyl-2'-O-pivaloylguanosine 3G.-Compound 2G ($4.44 \mathrm{~g}, 5 \mathrm{mmol}$) was evaporated with benzene to remove traces of water, and dissolved in a mixture of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{2}\right)$ and pyridine (7.5 cm^{3}). To this solution at $0-5^{\circ} \mathrm{C}$ was added $\mathrm{PivCl}\left(1.85 \mathrm{~cm}^{3}, 15\right.$ mmol), then the mixture was stirred at this temperature for 15 $\mathrm{min} . \mathrm{MsCl}\left(1.17 \mathrm{~cm}^{3}, 15 \mathrm{mmol}\right)$ was added, followed by addition of triethylamine ($4 \mathrm{~cm}^{3}$), after which the mixture was stirred at $0-5{ }^{\circ} \mathrm{C}$ for 10 min . The reaction was then quenched with 50% aq. pyridine $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with CHCl_{3} $\left(250 \mathrm{~cm}^{3}\right.$). The extract was washed successively with water (80 cm^{3}), aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$, and water ($80 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give crude title compound 3 G
(6.69 g). This product was used for further reactions without purification.

2-N,5'-O-Bis(4,4'-dimethoxytrityl)-2', 3^{\prime}-bis-O-methyl-

 sulfonylguanosine $\mathbf{4 G}$ and its $\mathbf{6 - O - M e t h a n e s u l f o n a t e ~} 10 .-\mathrm{MsCl}$ ($0.58 \mathrm{~cm}^{3}, 7.5 \mathrm{mmol}$) was added to a stirred solution of compound $2 \mathrm{G}(2.22 \mathrm{~g}, 2.5 \mathrm{mmol})$ in a mixture of dry $\mathrm{Et}_{3} \mathrm{~N}\left(2.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 18 min . The reaction mixture was then quenched with ice-water and extracted with $\mathrm{CHCl}_{3}\left(200 \mathrm{~cm}^{3}\right)$. The extracts were washed successively with water ($60 \mathrm{~cm}^{3}$), aq. $\mathrm{NaHCO}_{3}\left(2 \times 40 \mathrm{~cm}^{3}\right)$, and water $\left(60 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residual $\mathrm{Et}_{3} \mathrm{~N}$ was removed by coevaporation with benzene ($30 \mathrm{~cm}^{3}$) to give a crude mixture of the title products 4 G and 10 ($3.38 \mathrm{~g} ; 7: 3$, by ${ }^{1} \mathrm{H}$ NMR). The mixture was used without purification. An analytically pure sample was obtained by chromatography.De-6-O-methanesulfonylation of the Trismethanesulfonate 10.-To a stirred solution of compound $10(572 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOH}(140$ $\mathrm{mg}, 2.5 \mathrm{mmol}$) in a mixture of MeOH and water ($7: 3 ; 1 \mathrm{~cm}^{3}$). The mixture was stirred at this temperature for 10 min , diluted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$, and then washed with water (3×20 cm^{3}). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a neutral silica gel column with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (99:1) to give disulfonate $\mathbf{4 G} \mathbf{(4 5 6}$ $\mathrm{mg}, 86 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum of this product was identical with that of a sample prepared from diol 2G.

5'-O-(4-Methoxytrityl)-2', $\mathbf{3}^{\prime}$-bis-O-methylsulfonylinosine $\mathbf{4 H}$ and its 1-N-Methanesulfonyl Derivative 11.-Compound 2H ($9.74 \mathrm{~g}, 18 \mathrm{mmol}$) was evaporated with dry pyridine to remove traces of water, and was then dissolved in dry pyridine (185 cm^{3}). To this stirred solution at $0-5^{\circ} \mathrm{C}$, was added $\mathrm{MsCl}(4.2$ $\mathrm{cm}^{3}, 54 \mathrm{mmol}$), and the mixture was then stirred first at this temperature for 10 min , and then at r.t. for 3.5 h . After cooling of the mixture $\left(0-5{ }^{\circ} \mathrm{C}\right), 50 \%$ aq. pyridine ($20 \mathrm{~cm}^{3}$) was added, and then the mixture was diluted with $\mathrm{CHCl}_{3}\left(900 \mathrm{~cm}^{3}\right)$. The mixture was washed successively with water $\left(300 \mathrm{~cm}^{3}\right)$, aq. $\mathrm{NaHCO}_{3}\left(200 \mathrm{~cm}^{3}\right)$, and water $\left(2 \times 300 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residual pyridine was removed by repeated co-evaporation with toluene. The residue was chromatographed on a silica gel column to give compounds $\mathbf{4 H}(8.97 \mathrm{~g}, 70 \%)$ and 11 ($1.54 \mathrm{~g}, 11 \%$).

De- N^{1}-methanesulfonylation of the Trismethanesulfonate 11.-A solution of $\mathrm{KOH}(140 \mathrm{mg}, 2.4 \mathrm{mmol})$ in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of compound $11(233 \mathrm{mg}, 0.3$ mmol) in tetrahydrofuran (THF) $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0.5^{\circ} \mathrm{C}$, and the mixture was stirred first at this temperature for 20 min , and then at r.t. for 1.5 h . The progress of the reaction was monitored by TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (85:15). After the mixture had been cooled, it was neutralized to $\mathrm{pH} 6-7$ (by a pH test paper) with a mixture of MeOH and conc. $\mathrm{HCl}\left(20: 3, \mathrm{v} / \mathrm{v} ; \sim 1.3 \mathrm{~cm}^{3}\right)$, then diluted with $\mathrm{CHCl}_{3}\left(40 \mathrm{~cm}^{3}\right)$. The mixture was washed with water ($3 \times 20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a silica gel column with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1 \longrightarrow 97: 3$) to give disulfonate $\mathbf{4 H}$ (166 $\mathrm{mg}, 79 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum of this product was identical with that of a sample prepared from diol $\mathbf{2 H}$.

DMTr-Protected 1-(3-Deoxy- β-d-threo-pentofuranosy) uracil and -cytosine $\mathbf{8 U}$ and 8C, 9-(3-Deoxy- β-D-threo-pentofuranosyl)-adenine, -guanine, and MMTr-Protected Hypoxanthine Derivative 8A, 8G and 8H; General Procedure.-From esters 3. Substrate $\mathbf{3 U}$ or $\mathbf{3 H}(1 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$, while substrate $3 \mathrm{C}, 3 \mathrm{~A}$ or $3 \mathrm{G}(1 \mathrm{mmol})$ was dissolved in a mixture of benzene ($5 \mathrm{~cm}^{3}$) and $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. To this stirred solution at $0-5^{\circ} \mathrm{C}$ was added a solution of KOH (for 3U, $\mathbf{3} \mathbf{~ m m o l}$; for 3C, 3A and 3H, 5 mmol ; for $\mathbf{3 G}, 10 \mathrm{mmol}$) in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$, immediately after which NaBH_{4} (for 3U, C, A and $\mathbf{H}, 2 \mathrm{mmol}$; for 3G, 3 mmol) was added. The mixture was stirred at r.t. for $22-28 \mathrm{~h}$. The progress of the reaction was monitored with TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (for $\mathbf{3 U}, \mathbf{A}$ and \mathbf{G}, $95: 5 ; \mathbf{3 C}$ and $3 \mathrm{H}, 9: 1$). After the mixture had been cooled to $0-$ $5^{\circ} \mathrm{C}$, it was quenched with acetone $\left(2 \mathrm{~cm}^{3}\right)$ for substrates $3 \mathrm{C}, \mathrm{A}$ and \mathbf{G}; in the other cases, the reaction mixture was neutralized to pH 7-8 (by a pH test paper) at this temperature with a mixture ($9: 1, \mathrm{v} / \mathrm{v}$) of MeOH and conc. HCl . The mixture was partitioned between $\mathrm{CHCl}_{3}\left(250 \mathrm{~cm}^{3}\right)$ and water $\left(80 \mathrm{~cm}^{3}\right)$. The organic layer was washed with water $\left(2 \times 80 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a neutral silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ to give products 8 .
From disulfonates 4. To a stirred solution of substrate 4A, G or $\mathbf{H}(1 \mathrm{mmol})$ in a mixture of benzene $\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}(12$ cm^{3}) at $0-5^{\circ} \mathrm{C}$ was added a solution of KOH (for $4 \mathrm{~A}, \mathrm{G}, 10$ mmol ; for $\mathbf{4 H}, 8 \mathrm{mmol}$) in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$, immediately after which $\mathrm{NaBH}_{4}(3 \mathrm{mmol})$ was added. The mixture was treated in a manner similar to that described for the synthesis of
compounds 8 from the esters 3 to give the product, after chromatography.

1-(3-Deoxy- β-D-threo-pentofuranosyl)-uracil and -cytosine 9 U and 9 C , and $9-(3-$ Deoxy- β-D-threo-pentofuranosyl)-adenine, -guanine and -hypoxanthine 9A, 9G and 9H; General Procedure.-A stirred suspension of substrate $\mathbf{8 U}, \mathbf{C}, \mathbf{A}, \mathbf{G}$ or $\mathrm{H}(1 \mathrm{mmol})$ in acetic acid $\left(8 \mathrm{~cm}^{3}\right)$ was heated at $65-70^{\circ} \mathrm{C}$ (bath temp.) for $2-5 \mathrm{~min}$ until dissolution had occurred. To this solution was added water ($2 \mathrm{~cm}^{3}$), and the mixture was stirred at this temperature for $5-35 \mathrm{~min}$. The progress of the reaction was monitored by TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (8:2). After the reaction (for $\mathbf{8 U}, \mathbf{C}, \mathbf{A}$ or \mathbf{H}) was complete, the cold mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(70 \mathrm{~cm}^{3}\right)$, and extracted with water $(3 \times 10$ cm^{3}). The combined extracts were concentrated, and the residual acetic acid was removed by co-evaporation first with EtOH -water ($1: 1 ; 8 \mathrm{~cm}^{3}$), then with $\mathrm{EtOH}\left(4 \mathrm{~cm}^{3}\right)$, to provide the product, $9 \mathbf{U}, \mathbf{C}, \mathbf{A}$ or \mathbf{H}, in 91-100 yield. In the case of substrate 8G, the reaction mixture was evaporated and the residue was co-evaporated with EtOH -toluene-water ($1: 1: 1$; $3 \times 12 \mathrm{~cm}^{3}$) to give compound 9 G in 83% yield. An analytically pure sample of compound $\mathbf{9 H}$ was obtained by recrystallization of the product from aq. EtOH .

9-(3-Deoxy- β-D-threo-pentofuranosyl)xanthine $9 \mathbf{X}$.-The

 method of Sato et al. ${ }^{26}$ was slightly modified. To a stirred suspension of compound $9 \mathbf{G}(534 \mathrm{mg}, 2 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ was added 88% formic acid $\left(0.6 \mathrm{~cm}^{3}\right)$. Sodium nitrite $(0.69 \mathrm{~g}$, 10 mmol) was then added at r.t. over a period of 30 min and the mixture was stirred for a further 1.2 h , immediately after which the resulting solution was chromatographed on a HP 20 column to give the title compound, $\mathbf{9 X}(300 \mathrm{mg}, 56 \%)$ as crystals.9-[3-Deoxy-5-O-(4-methoxytrityl)- β-d-threo-pento-
furanosyl]- N^{1}-methylhypoxanthine 12.-From disulfonate $\mathbf{4 H}$. The crude product 8 H , prepared from compound $\mathbf{4 H}(1 \mathrm{mmol})$ according to the general procedure, was chromatographed on neutral silica gel (40 g) with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3 \longrightarrow 95: 5$ $\longrightarrow 9: 1)$ to provide the title compound $12(47 \mathrm{mg}, 9 \%)$ and recovered substrate $\mathbf{8 H}(\mathbf{4 0 8} \mathrm{mg}, 78 \%)$.

From compound $\mathbf{8 H}$ with methyl iodide. A mixture of compound $8 \mathrm{H}(1.10 \mathrm{~g}, 2.1 \mathrm{mmol})$, methyl iodide ($0.3 \mathrm{~cm}^{3}, 4.8 \mathrm{mmol}$), and DBU ($0.95 \mathrm{~cm}^{3}, 8.6 \mathrm{mmol}$) in dry DMF ($8 \mathrm{~cm}^{3}$) was stirred at r.t. for 10 min , after which the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $\mathrm{CHCl}_{3}\left(8: 2 ; 300 \mathrm{~cm}^{3}\right.$), washed with water ($5 \times 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed to give the title product $12(843 \mathrm{mg}, 75 \%$), whose spectral data (IR and ${ }^{1} \mathrm{H}$ NMR) were identical with those of a sample prepared from disulfonate $\mathbf{4 H}$.

From compound $\mathbf{8 H}$ with methyl methanesulfonate. To a stirred solution of compound $\mathbf{8 H}(105 \mathrm{mg}, 0.2 \mathrm{mmol})$ in a mixture of benzene $\left(0.4 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(0.8 \mathrm{~cm}^{3}\right)$ at $0-5{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOH}(67 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(0.3$ cm^{3}). A solution of methyl methanesulfonate ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}\left(0.3 \mathrm{~cm}^{3}\right)$ was added, and the mixture was treated in the manner described for the synthesis of compound $\mathbf{8 H}$ from disulfonate $\mathbf{4 H}$ to give, after chromatography, the title compound $12(15 \mathrm{mg}, 14 \%)$ and recovered substrate 8 H (54 mg , 51% recovery). The ${ }^{1} \mathrm{H}$ NMR spectrum of the product was identical with that of a sample prepared from compound $\mathbf{8 H}$ with methyl iodide.

9-(3-Deoxy- β-D-threo-pentofuranosyl)- N^{1}-methylhypoxanthine 13.-To a stirred solution of the ether $12(4.04 \mathrm{~g}, 7.5$ mmol) in acetic acid ($80 \mathrm{~cm}^{3}$) at $65^{\circ} \mathrm{C}$ (bath temp.) was added dropwise water ($20 \mathrm{~cm}^{3}$), and the mixture was stirred at this temperature for 30 min . After the mixture had been cooled to r.t., EtOH ($20 \mathrm{~cm}^{3}$) was added, and then the mixture was
concentrated. The residual acetic acid was co-evaporated, first with EtOH-toluene-water ($1: 1: 1 ; 2 \times 60 \mathrm{~cm}^{3}$) and then with EtOH-water ($1: 1 ; 60 \mathrm{~cm}^{3}$). The residue was chromatographed to give the product $13(1.50 \mathrm{~g}, 75 \%$) as an amorphous solid, which was crystallized by trituration with EtOH.

DMTr-Protected 1-(3-Deoxy-2-O-methylsulfonyl- β-D-threo-pentofuranosyl)-uracil and -cytosine 14 U and 14C.-The nucleoside 8 U or $8 \mathrm{C}(1 \mathrm{mmol})$ was evaporated twice with benzene to remove traces of water, and was then dissolved in dry pyridine (for $\mathbf{8 U}, 3 \mathrm{~cm}^{3}$; for $\mathbf{8 C}, 6 \mathrm{~cm}^{3}$). To this solution was added MsCl (3 mmol) at r.t. and the mixture was stirred at this temperature for 3-5 h. After the mixture had been cooled to $0-5^{\circ} \mathrm{C}$, it was quenched with 50% aq. pyridine $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{CHCl}_{3}\left(75 \mathrm{~cm}^{3}\right)$, and the extract was washed successively with water $\left(30 \mathrm{~cm}^{3}\right)$, aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, and water $\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The pyridine was removed by repeated co-evaporation with toluene. The residue was purified by chromatography to give the product $14 \mathrm{U}(560 \mathrm{mg}, 92 \%)$ or $14 \mathrm{C}(725 \mathrm{mg}, 79 \%)$.

2-N,5'-O-Bis(4,4'-dimethoxytrityl)-9-[3-deoxy-2-O-methyl-sulfonyl- β-D-threo-pentofuranosyl]guanine 14G.-Compound $8 \mathrm{G}(2.00 \mathrm{~g}, 2.3 \mathrm{mmol})$ was evaporated with benzene to remove traces of water, and dissolved in a mixture of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 $\left.\mathrm{cm}^{3}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(2 \mathrm{~cm}^{3}\right)$. To this stirred solution at $0-5^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}\left(0.44 \mathrm{~cm}^{3}, 5.7 \mathrm{mmol}, 2.5 \mathrm{~mol}\right.$ equiv.), and the mixture was stirred at r.t. for 15 min . A small amount of ice was added, immediately after which a solution of $\mathrm{KOH}(1.12 \mathrm{~g})$ in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was added to cleave the $6-O$-methanesulfonyl group. The progress of the reaction was monitored by TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5)$. After the mixture had been stirred at r.t. for 5 min , it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$. The solution was washed with brine $\left(3 \times 40 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. After chromatography, the title compound 14G $(2.01 \mathrm{~g}, 89 \%)$ was obtained.

9-[3-Deoxy-5-O-(4-methoxytrityl)-2-O-methylsulfonyl- β-D-threo-pentofuranosyl]hypoxanthine $\mathbf{1 4 H}$.-Compound $\mathbf{8 H}(262$ $\mathrm{mg}, 0.5 \mathrm{mmol}$) was evaporated twice with dry pyridine to remove traces of water, and dissolved in dry pyridine $\left(5 \mathrm{~cm}^{3}\right)$. To this stirred solution at $0-5{ }^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}\left(0.12 \mathrm{~cm}^{3}, 1.5\right.$ mmol), and the mixture was stirred first at this temperature for 5 min and then at r.t. for 2.7 h . The progress of the reaction was monitored by TLC with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(85: 15)$. After the mixture had been cooled to $0-5^{\circ} \mathrm{C}$, it was quenched with 50% aq. pyridine $\left(1 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CHCl}_{3}\left(250 \mathrm{~cm}^{3}\right)$. The extract was washed with water ($25 \mathrm{~cm}^{3}$) and then cooled to $0-5^{\circ} \mathrm{C}$. To this solution was added a solution of $\mathrm{KOH}(140 \mathrm{mg}$, $2.5 \mathrm{mmol})$ in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$, and the mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 8 min to cleave the N^{1}-methanesulfonyl group of the trismethanesulfonate. The progress of the reaction was monitored by TLC with the same solvent system as described above. The CHCl_{3} solution was washed with cold brine (3×70 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The pyridine was removed by repeated co-evaporation with toluene. The residue was purified by chromatography to give the title compound $\mathbf{1 4 H}$ ($220 \mathrm{mg}, 73 \%$).

DMTr-Protected 1-(2-Azido-2,3-dideoxy- β-D-erythro-pento-furanosyl)-uracil and -cytosine 15U and 15C, 9-(2-Azido-2,3-dideoxy- β-D-erythro-pentofuranosyl)guanine, and MMTr-Protected Hypoxanthine Derivative 15G and 15H; General Proce-dure.-Substrate $\mathbf{1 4 U}, \mathbf{C}, \mathbf{G}$, or $\mathbf{H}(1 \mathrm{mmol})$ was evaporated twice with benzene to remove traces of water, and was then dissolved in dry DMF ($10 \mathrm{~cm}^{3}$). To this stirred solution was added sodium azide (for 14 U and $\mathrm{H}, 3 \mathrm{mmol}$; for $14 \mathrm{C}, 5 \mathrm{mmol}$;
for $14 \mathrm{G}, 7 \mathrm{mmol}$), and the mixture was stirred at $110-115^{\circ} \mathrm{C}$ (bath temp.) for 3-7 h. After cooling, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}\left(8: 2 ; 100 \mathrm{~cm}^{3}\right)$ and washed with water ($4 \times 30 \mathrm{~cm}^{3}$), dried (MgSO_{4}), and evaporated. The residue was purified by chromatography to give the corresponding compound 15.

1-(2-Azido-2,3-dideoxy- β-D-erythro-pentofuranosyl)-uracil and -cytosine 16 U and 16 C , and 9-(2-Azido-2,3-dideoxy- $\beta-\mathrm{D}-$ erythro-pentofuranosyl)-guanine and -hypoxanthine 16 G and $\mathbf{1 6 H}$.-A mixture of substrate $15 \mathrm{U}(3.0 \mathrm{~g}, 5.4 \mathrm{mmol}), 15 \mathrm{C}(1.71 \mathrm{~g}$, $2.0 \mathrm{mmol})$, 15G ($850 \mathrm{mg}, 0.95 \mathrm{mmol}$), or $15 \mathrm{H}(3.3 \mathrm{~g}, 6.0 \mathrm{mmol})$ and 80% acetic acid (for $15 \mathrm{U}, 19 \mathrm{~cm}^{3}$; for $15 \mathrm{C}, 30 \mathrm{~cm}^{3}$; for 15 G , $13 \mathrm{~cm}^{3}$; for $15 \mathrm{H}, 60 \mathrm{~cm}^{3}$) was stirred at r.t. or at $50-65^{\circ} \mathrm{C}$ (bath temp.) for $0.5-3 \mathrm{~h}$. In the case of compound $15 \mathrm{U}, \mathrm{G}$ or H , the mixture was then partitioned between $\mathrm{Et}_{2} \mathrm{O}$ (for 15 U and H , $100 \mathrm{~cm}^{3}$; for $15 \mathrm{G}, 50 \mathrm{~cm}^{3}$) and water ($20 \mathrm{~cm}^{3}$), and the organic layer was extracted several times with water $\left(20 \mathrm{~cm}^{3}\right)$ until the product in the water layer could not be detected by TLC; the combined water layers were evaporated, and the acetic acid was removed by repeated co-evaporation with aq. EtOH to give the corresponding product $16 \mathrm{U}(1.10 \mathrm{~g}, 80 \%$), $16 \mathrm{G}(248 \mathrm{mg}$, 90%), or $16 \mathrm{H}(1.40 \mathrm{~g}, 90 \%)$. In the case of substrate 15 C , the reaction mixture was concentrated, and the acetic acid was removed by repeated co-evaporation with EtOH -toluene. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound 16 C ($42 \mathrm{mg}, 84 \%$).

9-(2-Azido-2,3-dideoxy- β-D-erythro-pentofuranosyl)xanthine 16X.-To a stirred suspension of the guanine $16 \mathrm{G}(230 \mathrm{mg}, 0.79$ mmol) in water $\left(15 \mathrm{~cm}^{3}\right)$ at r.t. was gradually added 88% formic acid ($4 \mathrm{~cm}^{3}$) and the mixture was stirred until solids completely disappeared. Sodium nitrite ($545 \mathrm{mg}, 7.9 \mathrm{mmol}$) was added portionwise to the solution over a period of 20 min , and the mixture was treated in a manner similar to that described for the synthesis of compound 9X. An amorphous product (189 mg) was rechromatographed on a silica gel column to afford the title compound 16 X ($150 \mathrm{mg}, 65 \%$).

Methanolysis of 9-(3-Deoxy- β-D-threo-pentofuranosyl)hypoxanthine 9 H .-A mixture of compound $\mathbf{9 H}(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ and Dowex 50 W -X8 ($80 \mathrm{mg} ; \mathrm{H}^{+}$form, $100-200$ mesh) ionexchange resin in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 10 min . After the mixture had been cooled, the resin was removed by filtration and washed with $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$. The combined filtrate and washings were evaporated to afford a mixture of methyl pentosides. The characteristic peaks of the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture were identical with those of a sample prepared from the known compound 9A. ${ }^{6 b .7 b}$

Acknowledgements

We thank Drs. S. Tsukakoshi, M. Saneyoshi and V. L. Narayanan, and their staff for the biological evaluation of the prepared nucleosides. We also thank Dr. J. Uzawa and Mrs. T. Chijimatsu for the measurement of the ${ }^{1} \mathrm{H}$ NMR spectra, and Miss M. Yoshida and her staff for the elemental analyses. In addition, we thank Mr. K. Hosaka and Misses Y. Tanaka, K. Ochiai, and Y. Morito for their assistance.

References

1 Presented in part at the 15 th International Carbohydrate Symposium, Yokohama, Japan, Aug. 1990, Abstr., p. 70.
2 M. Kawana and S. Emoto, Tetrahedron Lett., 1975. 3395; Chem. Lett., 1977, 597; Bull. Chem. Soc. Jpn., 1980, 53, 222; B. Nawrot, K. W. Pankiewicz, R. A. Zepf and K. A. Watanabe, J. Carbohydr. Chem., 1988, 7, 95.
3 H. Paulsen and D. Stoye, Chem. Ber., 1969, 102, 834; J. Hildesheim. A. Gaudemer and S. D. Géro, Chem. Ind. (London), 1970, 94.

4 F. Hansske and M. J. Robins, J. Am. Chem. Soc., 1983, 105, 6736; P. Herdewijn, J. Balzarini, E. De Clercq, R. Pauwels, M. Baba, S. Broder and H. Vanderhaeghe, J. Med. Chem., 1987, 30, 1270; P. Herdewijn, R. Pauwels, M. Baba, J. Balzarini and E. De Clercq, J. Med. Chem., 1987, 30, 2131; P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. Van Aerschot, G. Janssen and E. De Clercq, J. Med. Chem., 1988, 31, 2040; M. J. Robins, S. G. Wood, N. K. Dalley, P. Herdewijn, J. Balzarini and E. De Clercq, J. Med. Chem., 1989, 32, 1763.

5 S. Juntunen, H. Essadiq, A. Grouiller and J. Chattopadhyaya, Nucleosides, Nucleotides, 1985, 4, 187; A. Grouiller, H. Essadiq, H. Pacheco, S. Juntunen and J. Chattopadhyaya, Angew. Chem., Int. Ed. Engl., 1985, 24, 52; M. Kawana, K. Takeuchi, T. Ohba and H. Kuzuhara, Nucleic Acids Res. Symp. Ser., 1986, No. 17, p. 37; Bull. Chem. Soc. Jpn., 1988, 61, 2437; A. Grouiller and H. Essadiq, Can. J. Chem., 1989, 67, 708.
6 (a) M. Kawana and H. Kuzuhara, Tetrahedron Lett., 1987, 28, 4075; (b) M. Kawana and H. Kuzuhara, Carbohydr. Res., 1989, 189, 87.

7 (a) M. Kawana, N. Yamasaki, M. Nishikawa and H. Kuzuhara, Chem. Lett., 1987, 2419; (b) M. Kawana, M. Nishikawa, N. Yamasaki and H. Kuzuhara, J. Chem. Soc., Perkin Trans. 1, 1989, 1593.
8 J.-C. Wu, W. Tong, J.-M. Vial, G. Remaud and J. Chattopadhyaya, Tetrahedron, 1988, 44, 6705.
9 P. Herdewijn, J. Balzarini, R. Pauwels, G. Janssen, A. Van Aerschot and E. De Clercq, Nucleosides, Nucleotides, 1989, 8, 1231; V. E. Marquez, C. K.-H. Tseng, H. Mitsuya, S. Aoki, J. A. Kelley, H. Ford, Jr., S. J. Roth, S. Broder, D. G. Johns and S. J. Driscoll, J. Med. Chem. 1990, 33, 978.
10 T. Sasaki, K. Minamoto and H. Suzuki, J. Org. Chem., 1973, 38, 598; T. Sasaki, K. Minamoto and S. Tanizawa, J. Org. Chem., 1973, 38, 2896; T. Sasaki, K. Minamoto and K. Hattori, J. Org. Chem., 1973, 38, 1283; Tetrahedron, 1974, 30, 2689; T. Sasaki, K. Minamoto, K. Hattori and T. Sugiura, J. Carbohydr. Nucleosides Nucleotides, 1975, 2, 47; Y. Mizuno, Y. Watanabe, K. Ikeda and J. A. MaCloskey, Chem. Pharm. Bull., 1975, 23, 1411; T. Sasaki, K. Minamoto, T. Sugiura and M. Niwa, J. Org. Chem., 1976, 41, 3138; K. Minamoto, N. Fujiwara, Y. Hamano and S. Eguchi, Nucleic Acids Res. Symp. Ser., No. 21, 1989, p. 121; P. Herdewijn, Tetrahedron, 1989, 45, 6563.
11 H. Mitsuya and S. Broder, Nature (London), 1987, 325, 773 and references cited therein.
12 E. De Clercq, A. Van Aerschot, P. Herdewijn, M. Baba, R. Pauwels and J. Balzarini, Nucleosides, Nucleotides, 1989, 8, 659; H. Mitsuya, R. Yarchoan and S. Broder, Science, 1990, 249, 1533.

13 H. Schaller, G. Weimann, B. Lerch and H. G. Khorana, J. Am. Chem. Soc., 1963, 85, 3821.

14 M. Smith, D. H. Rammler, I. H. Goldberg and H. G. Khorana, J. Am. Chem. Soc., 1962, 84, 430; R. Lohrmann and G. H. Khorana, J. Am. Chem. Soc., 1964, 86, 4189; D. Flockerzi, G. Silber, R. Charubala, W. Schlosser, R. S. Varma, F. Creegan and W. Pfleiderer, Liebigs Ann. Chem., 1981, 1568.
15 G. H. Hakimelahi, Z. A. Proba and K. K. Ogilvie, Can. J. Chem., 1982, 60, 1106.
16 A. Van Aerschot, P. Herdewijn, G. Janssen and H. Vanderhaeghe, Nucleosides, Nucleotides, 1988, 7, 519.
17 K. Kamaike, F. Uemura, S. Yamakage, S. Nishino and Y. Ishido, Nucleosides, Nucleotides, 1987, 6, 699; K. Haraguchi, H. Tanaka and T. Miyasaka, Nucleic Acids Res. Symp. Ser., 1990, No. 22, p. 3.

18 P. K. Bridson, W. T. Markiewicz and C. B. Reese, J. Chem. Soc., Chem. Commun., 1977, 791; R. W. Adamiak, E. Biala and B. Skalski, Nucleic Acids Res., 1985, 8, 2989; S. R. Sarfati and V. K. Kansal, Tetrahedron, 1988, 44, 6367.
19 T. R. Webb, H. Mitsuya and S. Broder, J. Med. Chem., 1988, 31, 1475.
20 M. Hirata, Chem. Pharm. Bull., 1968, 16, 291.
21 A. Nyilas, L. Vrang, A. Drake, B. Öberg and J. Chattopadhyaya, Acta Chem. Scand., Ser. B, 1986, 40, 678.
22 H. T. Miles, Proc. Natl. Acad. Sci. U.S.A., 1961, 47, 791.
23 J. W. Jones and R. K. Robins, J. Am. Chem. Soc., 1963, 85, 193.
24 M. Karplus, J. Chem. Phys., 1959, 30, 11; C. D. Jardetzky, J. Am. Chem. Soc., 1960, 82, 229.
25 J. A. Warshaw and K. A. Watanabe, J. Med. Chem., 1990, 33, 1663.
26 A. Sato, R. Imai, N. Nakamizo and T. Hirata, Chem. Pharm. Bull., 1979, 27, 765.
27 During the course of this work, the lack of activity of compounds 9C (ref. 19), 16U (ref. 25), and 16A (ref. 12) against HIV has been reported.
28 Other biological activities, see for example: for compound 9C, G. W. Kreis, K. A. Watanabe and J. J. Fox, Helv Chim. Acta, 1978, 61, 1011; B. M. Mehta and D. J. Hutchison, Ann. N. Y. Acad. Sci., 1975, 255, 559; for compound 9A, M. E. Tafe, P. J. Murphy, W. P. Roberts and A. Kerr, Nature (London), 1979, 280, 697; for compound 16C, S. Izuta, S. Kimura, K. Takenuki and M. Saneyoshi, Nucleic Acids Res. Symp. Ser., 1986, No. 17, p. 153.
29 D. H. Hollenberg, K. A. Watanabe and J. J. Fox, J. Med. Chem., 1977, 20, 113.
30 R. J. Suhadolnik, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970, p. 123.

Paper 1/05116D
Received 8th October 1991
Accepted 28th October 1991

